Transectionally targeted cancer gene therapy for small cell lung cancer

Nina Pedersen, Thomas T. Poulsen, Mikkel W. Pedersen, Michael S. Lan*, Mary B. Breslin* and Hans S. Poulsen

Department of Radiation Biology, Section 6321, The Forscenters, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
*Department of Pediatrics, Research Institute for Children, Children’s Hospital, Louisiana State University Health Sciences Center, New Orleans, LA, USA

E-mail: nina@rh.dk

Background
- Small cell lung cancer (SCLC) is a disease to which there currently is no satisfactory treatment.
- Treatment must be applied systemically, as the disease frequently is disseminated. Therefore treatment must be strictly targeted to the cancer cells.
- Targeted cancer gene therapy can be achieved by transcriptional regulation using cancer specific promoters controlling expression of therapeutic genes.
- Cancer specific promoters are often associated with genes active during early development, silenced in the adulthood, but re-activated in cancers.
- Using a global gene expression analysis we have identified several genes re-activated in SCLC and cloned their promoter regions.

Aim
- To test the ability of different promoter regions to confer SCLC specific expression.
- To test the capacity of the promoters to confer SCLC specific cell death.

Conclusions
- We have demonstrated "proof of principle" for using global gene expression analyses for identification of cancer specific promoters.
- The INSM1 promoter is a novel candidate for transcriptionally targeted cancer gene therapy for SCLC.
- Other promoters show high activity, but specificity must be determined.

Results
- Insulinoma associated-1 (INSM1) is a nuclear transcriptional repressor, normally exclusively expressed transiently during early neuroendocrine development.
- The expression of INSM1 is regulated by tissue and developmentally regulated neuroendocrine transcription factors.
- INSM1 mRNA is highly re-expressed in SCLC cell lines and tumors with no expression in adult tissues.

Background
- A 1.7 kb region of the human INSM1 promoter has been shown to mediate correct spatial and temporal expression in transgenic mice.
- Expression of reporter genes from this INSM1 promoter region showed very high expression in SCLC cell lines and no expression in other cell lines.

Conclusions
- The INSM1 promoter is sufficiently active to confer cell death in INSM1 positive cell lines, when regulating expression of a suicide gene (HSV-TK).

Results
- Enhancer of zeste homolog 2 (EZH2) is a member of the Polycomb group of proteins important for maintaining the silenced state of homeotic genes in the adult.
- EZH2 has been found highly overexpressed in a number of cancers, in particular prostate and breast.
- EZH2 mRNA is also highly expressed in SCLC and only in testes in the adult.

Conclusion
- A 1.1 kb region of the EZH2 promoter has been shown to be activated by members of the E2F family.
- Expression of a reporter gene from this EZH2 promoter region showed very high expression in several SCLC cell lines with no expression in normal fibroblast cell lines. No expression was observed in the breast cancer cell line MDA 231.

References