#832

Abstract Suicide gene therapy is effective for treating chemo-resistant small cell lung cancer cells

Signe R. Michaelsen¹, Camilla L. Christensen¹, Maxwell Sehested², Frederik Cramer¹, Thomas T. Poulsen¹ and Hans S. Poulsen¹ ¹Department of Radiation Biology, The Finsen Center, National University Hospital, Copenhagen, Denmark. email: signe.regner.michaelsen@rh.regionh.dk ²Department of Pathology, The Diagnostic Centre, National University Hospital, Copenhagen, Denmark.

Background

- Small Cell Lung Cancer (SCLC) is a highly aggressive cancer and SCLC patients have a very poor prognosis
- Resistance arises in patients with SCLC following treatment with chemotherapy
- Suicide gene (SG) therapy driven by the SCLC Insulinoma-associated (INSM1) specific promoter makes it possible to target suicide toxin production and cytotoxicity exclusively to SCLC
- This study examined INSM1 promoter-driven SG therapy using different systems: Yeast cytosine deaminase-uracil phosphoribosyl transferase (YCD-YUPRT) in combination with the prodrug 5fluorocytosine (5-FC) and E.coli nitroreductase (NTR) together with the bromomustard prodrug SN27686 (figure below)

Table 1: Chemo-sensitivity of 8 SCLC cell lines to VP-16 (Etoposide), CP (Cisplatin), DAU (Daunorubicin) and BCNU (Carmustine) measured by MTT assay after 7 days of exposure. Table shows IC_{50} values with (95% CI)

Aim

To test the influence of chemoresistance on the therapeutic potential of transcriptional targeted SG therapy

Methods

SCLC cell lines:

- NCI-H69-derived cell lines resistant to etoposide (H69-VP), cisplatin (H69-CPR), BCNU (H69-BCNU) and daunorubicin (H69-DAU).
- **GLC-14**, GLC-16, GLC-19; cell lines derived from the same patient before treatment, after chemotherapy with cyclophosphamide, doxorubicin and etoposide or after subsequent radiation therapy, respectively.
- Sensitivity profiles were obtained by MTT assay after treating the cells with etoposide (VP-16), cisplatin (CP), carmustine (BCNU) or daunorubicin (DAU).
- Protein expression was determined by Western blot (WB) analysis and Human apoptosis or phospho-kinase array kits
- **INSM1** promoter activity was evaluated directly by transient transfection of cells with luciferase (LUC) reporter gene plasmids carrying the INSM1 promoter or the unspecific SV40 promotor or indirectly by real-time PCR quantification of INSM1 mRNA level.
- In vivo INSM1 promoter activity was evaluated by immunohistochemistry (IHC) of SCLC tumor xenografts stably expressing EGFP under the control of the INSM1 promoter
- The INSM1-YCD-YUPRT/5-FC and INSM1-NTR/SN27686 SG systems were tested by MTT assay after plasmid transfection by lipofectamine, and subsequent prodrug exposure.

Chemo-sensitivity profiles of a panel of SCLC cell lines				
		Drug (µM)		
Cell Line	VP-16	СР	DAU	BCNU
NCI-H69	0.42 (0.35-0.50)	0.30 (0.22-0.42)	0.055 (0.042-0.073)	5.1 (3.2-8.1)
H69-VP	6.2 (5.6-6.8)	0.41 (0.29-0.58)		
H69-DAU			0.93 (0.30 - 2.9)	1.6 (0.96-2.6)
H69-CPR	0.37 (0.31-0.45)	3.1 (1.9-5.1)		
H69-BCNU			0.045 (0.036-0.055)	10.82 (5.7-20.6)
GLC-14	0.062 (0.051-0.076)	0.42 (0.29-0.60)	0.020 (0.013-0.030)	5.93 (5.05-6.96)
GLC-16	0.48 (0.46-0.51)	0.30 (0.26-0.34)	0.048 (0.039-0.059)	25.40 (21.8-29.6)
GLC-19	0.24 (0.19-0.31)	0.35 (0.22-0.55)	0.029 (0.026-0.032)	3.97 (3.28-4.82)

A) Expression of MDR proteins. Detected by WB. B) Expression of molecules involved in apoptosis and survival pathways. Detected by Human protein profiler arrays.

concentrations for 7 days.

Combination suicide gene therapy and chemotherapy is superior to single agent therapy in chemo-resistant cells

Results

with INSM1-NTR or mock plasmid followed by exposure to series of SN27686 concentrations for 7 days.

Figure 5: Cytotoxic effect of combination therapy

A) Viability of the cells after transient transfection with INSM1-YCD-YUPRT plasmid and exposure to 5-FC, VP-16 and CP in indicated doses for 7 days. Viabilitv cells transiently transfected with mock or the combination of INSM1-YCD-YUPRT and INSM1-FLAG.NTR plasmid and exposed to either 5-FC or SN27686 or a combination in indicated doses for 7 days

INSM1 promoter activity is high in both chemo-sensitive and -resistant SCLC cells and tumors

Figure 2: INSM1 promoter activity in SCLC cells.

A) Cells were transiently transfected with INSM1-LUC or SV40-LUC and luciferase activity was measured

B) INSM1 mRNA transcript level measured by real-time qPCR.

C) IHC detection of EGFP (indirectly measurement of INSM1 activity) and Ki67 (proliferation) expression in xenografts of GLC-16 cells stably transfected with INSM1-EGFP plasmid.

The utilized panel of SCLC cell lines exhibit resistance to a broad range of chemotherapeutic agents with varying IC₅₀ values (table 1)

Drug resistance facilitates changes in expression of proteins involved in regulation of MDR, apoptosis and kinase growth pathways (table 1 & figure 1)

The INSM1 promoter activity is maintained in vitro regardless of chemo-resistance and changes in expression of proteins involved in response to chemotherapy (figure 1-2, table 1)

The INSM1 promoter is highly active in vivo in chemoresistant SCLC xenografts (figure 2)

The chemo-resistant cell lines were equally sensitive to YCD-YUPRT/5-FC gene therapy as their chemosensitive variants (figure 3)

Despite reduced sensitivity to NTR/SN27686 therapy in cells resistant to alkylating agents, equal cytotoxicity were obtained by exposing cells to higher prodrug doses, still not inducing off-target toxicity in NTRnegative cells (mock transfected) (figure 4)

Additive cytotoxic effects were achieved in chemoresistant SCLC cells exposed to combination therapy as compared to single agent therapy (figure 5)

Conclusion

Targeted suicide gene therapy is a potent therapeutic approach for chemo-resistant SCLC with highest efficacy achieved when applied as combination therapy